

The Zenith Program

Critical Design Review

Jedreck Acquissa, Peyton C. Breland, Dylan A. Gardner, Mark A. Ioffredo, Zachary L. Isriel

Zenith Program Leads

Jedreck Acquissa

- Role: Recovery Systems Lead
- Engineering Interests: Fluid Design and Food Manufacturing

Peyton C. Breland

- Role: Propulsion & Vehicle Design Lead
- Engineering
 Interests: Fluid
 Design, Flight
 Vehicle Design and
 Manufacturing

Dylan A. Gardner

- Role: STEM Engagement Lead
- Engineering
 Interests: Fluid
 design, Heat
 Transfer, and
 Manufacturing

Mark A. loffredo

- Role: Avionics
 System Lead
- Engineering Interests: Fluid Design and Aerodynamics

Zachary L. Isriel

- Role: Program Director
- Engineering Interests: Human spaceflight, spacecraft R&D, commercial launch

Launch Vehicle General Dimensions

- ➤ Full Scale Length: 99"
- ➤ Outer Airframe Diameter: 6.154"
- ➤ Weight: 38.30 lb
- ➤ Burnout Weight: 33.68 lb

Material Selection

- ➤ 3-Printed Components: Acrylonitrile Butadiene Styrene (ABS) and Polylactic Acid (PLA)
- > Airframe: Blue Tube
- ➤ Bulkheads and Centering Rings: Baltic Birch Plywood
- ➤ Payload Bay Roof Enclosure : LEXAN

Nosecone Design

- > LD-Haack Series
 - ➤ Mathematically Derived Profile
- ➤ 3-D Printed from ABS in 3
 separate sections for ease of printing

Upper & Lower Payload Bays

Avionics Bay

- Between UPB and LPB
- ➤ Sled and bulkheads held together by 5/16"-18 UNC threaded rods
- ➤ Two CO2 Ejection charges on each side
 - CO2 Cartridges sits inside of bay

Centering Rings, Bulkheads, & U-bolts

Nose Cone Bulkhead

Centering Rings, Bulkheads, & U-bolts

➤ Avionics Bay Bulkheads

Centering Rings, Bulkheads, & U-bolts

> Centering Rings and Bulkheads material: Baltic Birch Plywood

Fin Can

- > Front 2 centering rings are epoxied in place
- > Aft centering ring (in front of tail cone) is removeable
 - > Held in place by threaded rods
- > 3D Printed ABS tail cone insulated with fiber glass

Fin Design

- Clipped Delta Geometry
- ➤ Each fin canted 1.5° to allow spin stabilization

➤ Material: 3-D printed ABS

➤ AeroTech L850W

➤ Motor Specifications

> Total Impulse: 3,646.2 Ns

➤ Initial Thrust: 1,000.9 N

Max Thrust: 1,866.2 N

> Burn Time: 4.4 s

➤ Weight: 3,742 g

Recovery System

Recovery Overview

Separation & Energetic Locations

Parachutes & Recovery Harness

Drogue:

Fruity Chutes 24" Classic Elliptical

Main:

Fruity Chutes 84" Iris Ultra Standard

Shock Cord:

9/16-inch Nylon webbed 3000 lbf

Recovery Avionics

Altimeters

- Primary: Altus Metrum TeleMega v4
 - > Drogue: Apogee + 1.5s
 - Main: 550 ft AGL
- ➤ Secondary: Entacore AIM 4 USB
 - ➤ Drogue: Apogee + 2 sec
 - ➤ Main: 550 ft + 2 sec
 - Pyro events for AIM coded to seconds after liftoff based upon simulation data, as backup for TeleMega barometer-based events

GPS Trackers/Locators

Altus Metrum TeleMega v4

- Transmitter Operating Frequency: 433
 MGHz
- ➤ Transmitter Operating Power: 10-40 mW
- Live Telemetry downlink via additional ground station kit
- > GPS Tracker

Apple AirTag

- Bluetooth for proximity locating
- Apple-designed U1 chip for ultra wideband and precision tracking
 - ➤ Two transmitting frequencies: 6.24 GHz and 8.2368 GHz
- Built-in speaker for sonic locating
- Accelerometer sensor

Mission Performance Predictions

Predicted Launch Values

- ➤ Static Stability Margin: 2.6 calibers
- > Thrust to Weight ratio: 5.05
- ➤ Rail Exit Velocity: 64.5 ft/s
- ➤ Max Velocity: 544 ft/s
- ➤ Max Acceleration: 196.1 ft/s^2

NOTE: The values shown in this table are simulated with 10 mph wind speeds

- > Predicted to be 4,600 ft
- ➤ Hand calculated apogee: 4,431 ft

➤ Simulated via OpenRocket

- Various wind conditions ranging from: 0-20 MPH
- ➤ Various launch angles ranging from: 5-10°
- ➤ 144" Launch rail length

Max Vehicle Speed:	544 ft/s
Fin Flutter Speed:	1837 ft/s
Percent Flutter Speed Achieved:	29%
Factor of Safety:	<mark>3.44</mark>

Wind Drift and Descent Time

- Maximum Wind Drift
 - > 2367.2 ft
- Descent Time
 - > 80.7 s
- ➤ Yearly Avg. wind speeds in Huntsville, AL: 5-12 mph

Wind Speed	Apogee	Descent	Wind
(mph)	(ft)	Time (s)	Drift (ft)
0	4600	80.7	0
5	4600	80.7	591.8
10	4600	80.7	1183.6
15	4600	80.7	1775.4
20	4600	80.7	2367.2

Landing Kinetic Energy

Section	mass (g)	mass (lbm)	mass (slug)	Descent Velocity (ft/s)	Kinetic Energy (ft-lb)
Nosecone + UPB	4720	10.4058	0.3234	18.6	55.946
Nosecone + UPB + payload	6120	13.4923	0.4194	18.6	72.540
Payload	1400	3.0865	0.0959	18.6	16.594
AV bay	2056	4.5327	0.1409	18.6	24.370
LPB + Fin can	6235	13.7458	0.4272	18.6	73.903

➤ Mass of largest section: 6235 g

➤ Maximum Kinetic Energy: 73.9 ft-lb

Main Parachute Opening Shock Force

- ➤ Nylon webbed harness rated at 3000 lbf
- ➤ Max loading: 97.68 lbf
 - Combination of the bottom half sections of the launch vehicle tethered to the main parachute
- ➤ Factor of Safety ~ 30

Section	Mass (slug)	Opening Shock (lbf)
Nosecone + UPB (slug)	0.3235	55.4881
Payload (slug)	0.0960	16.4583
AV Bay (slug)	0.1409	24.1703
LPB + Fin Can (slug)	0.4286	73.5100

Subscale Launch Results

Launch Day Conditions

➤ Date: Saturday, December 17th, 2022

➤ Location: Palm Bay, FL

➤ Weather:

➤ Temperature: 74 °F

 \rightarrow Wind: 9 MPH (N \rightarrow NE)

➤ Mostly clear skies

Flight Result: Partial Success

- > Achieved Altitude: 3,279 ft
- Vehicle recovered safely on pavement w/ only a minor scratch on one of the fins

Payload

Revised Payload Design

Requirements Verification

Status of Requirements Verification

- Fabrication shop manager appointed to ensure team derived safety requirements are met
- Pre-flight simulations implemented for mission critical structures or flight metrics to avoid part failure or vehicle underperformance
- Pre-flight testing regime developed as result of partial failure in sub-scale flight to physically test all loads vehicle will experience in flight. Avionics verification measures under development.
- Assembly, Pre-Flight, Terminal Count & Launch, and Post-Flight operation checklists created and implemented for future test flights to ensure adherence to NASA vehicle performance requirements and team derived safety requirements

Test	NET Date	Planned Date	NLT Date
Fin Can Drop (Shear Pin Testing)	1/16/23	Week of 1/23/23	2/6/23
Separation Test (Resized Shear Pins and Charges)	1/23/23	Following can drop	2/6/23
ABS Material Testing (contingent on HPMI availability)	1/16/23	HPMI dependent	*3/6/23 (FRR)
Payload receiver and RAFCO testing	1/23/23	Week of 1/30/23	2/6/23
Full-Scale Flight	2/11/23	2/18/23	2/25/23

THANK YOU!

